What unifies these two kinds of design is that they both involve the serialization of in-memory data structures. For the internal operation of computer programs, the most convenient representation of a complex data structure is one in which all fields have the machine's native data format (e.g. two's-complement binary for integers) and all pointers are actual memory addresses (as opposed, say, to being named references). But these representations are not well suited to storage and transmission; memory addresses in the data structure lose their meaning outside memory, and emitting raw native data formats causes interoperability problems passing data between machines with different conventions (big- vs. little-endian, say, or 32-bit vs. 64-bit).
For transmission and storage, the traversable, quasi-spatial layout of data structures like linked lists needs to be flattened or serialized into a byte-stream representation from which the structure can later be recovered. The serialization (save) operation is sometimes called marshaling and its inverse (load) operation unmarshaling. These terms are usually applied with respect to objects in an OO language like C++ or Python or Java, but could be used with equal justice of operations like loading a graphics file into the internal storage of a graphics editor and saving it out after modifications.
A significant percentage of what C and C++ programmers maintain is ad-hoc code for marshaling and unmarshaling operations—even when the serialized representation chosen is as simple as a binary structure dump (a common technique under non-Unix environments). Modern languages like Python and Java tend to have built-in unmarshal and marshal functions that can be applied to any object or byte-stream representing an object, and that reduce this labor substantially.
But these naïve methods are often unsatisfactory for various reasons, including both the machine-interoperability problems we mentioned above and the negative trait of being opaque to other tools. When the application is a network protocol, economy may demand that an internal data structure (such as, say, a message with source and destination addresses) be serialized not into a single blob of data but into a series of attempted transactions or messages which the receiving machine may reject (so that, for example, a large message can be rejected if the destination address is invalid).
Interoperability, transparency, extensibility, and storage or transaction economy: these are the important themes in designing file formats and application protocols. Interoperability and transparency demand that we focus such designs on clean data representations, rather than putting convenience of implementation or highest possible performance first. Extensibility also favors textual protocols, since binary ones are often harder to extend or subset cleanly. Transaction economy sometimes pushes in the opposite direction—but we shall see that putting that criterion first is a form of premature optimization that it is often wise to resist.
Finally, we must note a difference between data file formats and the run-control files that are often used to set the startup options of Unix programs. The most basic difference is that (with sporadic exceptions like GNU Emacs's configuration interface) programs don't normally modify their own run-control files—the information flow is one-way, from file read at startup time to application settings. Data-file formats, on the other hand, associate properties with named resources and are both read and written by their applications. Configuration files are generally hand-edited and small, whereas data files are program-generated and can become arbitrarily large.
Historically, Unix has related but different sets of conventions for these two kinds of representation. only conventions for data files are examined in this chapter.
Wednesday, July 15, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment